H.T.No. **R23** O.P.Code: 23HS0835

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Regular Examinations February-2025

PROBABILITY AND COMPLEX VARIABLES

(Electronics & Communications Engineering)					
Tin	ıe:	3 Hours	Max.	Mark	ks: 70
$\frac{PART-A}{\text{(Answer all the Questions } 10 \text{ x } 2 = 20 \text{ Marks)}}$					
1	a	Define axiomatic definition of Probability.	CO1	L1	2M
1	b	Write the density function of Rayleigh distribution.	CO1	L1	2M
	c	State Chebyshev's inequality.	CO2	L1	2M
	d	Define Statistical Independence of two r.v's X and Y	CO ₂	L1	2M
	e	Define joint characteristic function.	CO3	L1	2M
	f	Write any two properties of jointly Gaussian random variable.	CO ₃	L1	2M
	g	State Cauchy-Riemann (C-R) equations in cartesian coordinates.	CO ₄	L1	2M
	h	Show that the function $(x,y) = \sin hx \sin y$ is harmonic.	CO ₄	L2	2M
	i	Show that $\oint_C \frac{dz}{(z-a)} = 2\pi i$, where C is the circle $ z-a = r$.	CO5	L2	2M
	j	State Cauchy Residue theorem.	CO5	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50 \text{ Marks}$)			
		UNIT-I			
2		A manufacturing plant makes radios that each contain an integrated	CO ₁	L3	10M
		circuit (IC) supplied by three sources A, B and C. The probability that the			
		IC in a radio came from one of the sources is 1/3, the same for all			
		sources. ICs are known to be defective with probabilities 0.001, 0.003, and 0.003 for sources. A. B. and C. respectively.			
		and 0.002 for sources A, B and C respectively. (i) What is the probability any given radio will contain a defective IC?			
		(ii) If a radio contains a defective IC, find the probability it came from			
		source A. Repeat for sources B and C.			
		OR			
3	a	Spacecraft are expected to land in a prescribed recovery zone	CO ₁	L2	5M
		80% of the time. Over a period of time, six spacecraft land.			
		(i) Find the probability that none lands in the prescribed zone.			
		(ii) Find the probability that at least one will land in the prescribed zone.			
	b	Assume that the time of arrival of birds at a particular place on a	CO ₁	L3	5M
		migratory route, as measured in days from the first of the year, is			
		approximated as a Gaussian random variable X with $a_X = 200$ days and			
		$\sigma_{\chi} = 20$ days.			
		(i) What is the probability the birds arrive after 160 days but on or before			
		the 210 th day?			
		(ii) What is the probability the birds will arrive after 231 st day?			
		UNIT-II			
4		A random variable has a probability density $f_x(x) = \frac{5}{4}(1-x^4)$; $0 < x \le 1$.	CO2	L1	10M
		Find (i) $E(X)$ (ii) $E(4X+2)$, (iii) $E(X^2)$ and (iv) $V(X)$			

CO₂ 5 Given the function $f_{X,Y}(x,y) = \frac{(x^2 + y^2)}{8\pi}$; $x^2 + y^2 < b$ L3 10M (i) Find a constant b so that this is a valid joint density function. (ii) Find $P\{0.5b < X^2 + Y^2 \le 0.8b\}$. (Use polar coordinates in both parts). UNIT-III For two random variables X and \overline{Y} have the joint density 10M 6 $f_{X,Y}(x,y) = x + y$; 0 < x < 1 and 0 < y < 1. Find: (i) V(X) and V(Y)(ii) The Covariance and (iii) Correlation coefficient (ρ) Gaussian random variables X_1 and X_2 for which $\overline{X_1} = 2$, $\sigma_{X_1}^2 = 9$, $\overline{X_2} = -1$ 7 10M , $\sigma_{X_2}^2 = 4$ and $C_{X_1X_2} = -3$ are transformed to new random variables Y_1 and Y_2 according to $Y_1 = -X_1 + X_2$, $Y_2 = -2X_1 - 3X_2$. Find (a) $E(X_1^2)$ (b) $E(X_2^2)$ (c) $\rho_{X_1X_2}$ (d) $\sigma_{Y_1}^2$ (e) $\sigma_{Y_2}^2$ and (f) $C_{Y_1Y_2}$ CO₄ L3 **10M** 8 Prove that the function f(z) defined by $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$; $(z \neq 0)$, f(0) = 0 is continuous and Cauchy-Riemann equations are satisfied at the origin. OR L₂ a Show that $u = \frac{1}{2}\log(x^2 + y^2)$ is harmonic **CO4** 5M **b** Find the analytic function whose real part is $e^{2x}(x\cos 2y - y\sin 2y)$ **CO4 L4 5M** a Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the line y = x. CO₅ **L2 5M** 10 **b** Evaluate $\oint_C \frac{e^{2z}}{(z-1)(z-2)} dz$, where C is the circle |z| = 3 by using CO₅ L3 5M Cauchy's integral formula. a Find the Laurent's expansion of $f(z) = \frac{1}{z^2 - 4z + 3}$ for the region **CO5** L3 **5M** 11 1 < |z| < 3**b** Determine the poles of the function $f(z) = \frac{1}{(z+1)(z+3)}$ and the residue at **CO5** 5M

each pole.